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Abstract 

The study of electron-phonon interact ions i n  semiconductors w a s  

i n i t i a t e d  with an evaluation of severa l  known transducer techniques f o r  

generating microwave phonons. Piezoelectric exc i ta t ion  was  chosen and 

some tourmaline and quartz c rys t a l s  were examined f o r  use as transducers 

at 9.3 Gc/sec. 

i n  transduction eff ic iency a t  4.2'1~. 
wave phonon attenuation was  measured i n  quartz and i n  green and black tour-  

maline. The quartz measurements covered a very wide dynamic range and were 

very consistent from one c r y s t a l  t o  another. These data  were i n  very good 
agreement with measurements by other invest igators  over l imited portions of 

this dynamic range. The temperature dependence obtained w a s  compared with 

several  published theories,  none of which w a s  completely adequate. The 

attenuation i n  t o m a l i n e  w a s  qui te  d i f fe ren t  i n  its temperature dependence 

from quartz and other c rys ta l s .  It exhibited a very fast  change of slope with 

increase i n  temperature but could not be compared t o  ex is t ing  theories  since 

necessary auxi l iary data  i s  not available f o r  tourmaline. Q u a r t z  c rys t a l s  

were used as transducers t o  generate microwave phonons i n  InSb semiconductor 

c rys ta l s .  

a t tenuat ion i n  boat-grown InSb crys ta l s .  

much lower dislocation density.  A decrease i n  attenuation with temperature in-  

crease w a s  observed i n  InSb between 4 . 2 ' ~ ~  and l5'K. 
s h i f t  of about + 2 Mc/sec w a s  observed i n  phonons which traversed the InSb 

c rys t a l .  The above e f f ec t s  were measured consis tent ly  but the consistency 

w a s  only qual i ta t ive.  

sLEd. 

A large v a r i a b i l i t y  w a s  observed from one c r y s t a l  t o  another 

The temperature dependence of micro- 

Dislocation damping w a s  found t o  be a strong source of phonon 

Czochralski grown c rys t a l s  had a 

Also, a small frequency 

A fu r the r  investigation of these e f f ec t s  is  being pur- 
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A. Introduction 

Phonon interact ions i n  so l ids  have a t t r a c t e d  a grea t  deal of 

research e f fo r t  since such in te rac t ions  can serve a s  useful  probes, of ten 

qui te  different  from electromagnetic interact ions,  i n t o  the s t ruc ture  

and properties of the  sol ids .  Tradi t ional ly  thermal conductivity and 

diffusion, heat capacity, and, spin l a t t i c e  relaxat ion t i m e s  have been 

used t o  study t h e  behavior of phonons i n  so l ids .  I n  these experiments 

the phonons studied consisted of the  thermal d is t r ibu t ion  of l a t t i c e  

vibrat ions.  More recently,  slow neutron d i f f r ac t ion  s tudies  have been 

useful  i n  studying thermal phonon behavior 1) 

I n  recent years, t he  techniques f o r  generating coherent beams 

of phonons with frequencies approaching thermal d is t r ibu t ions  i n  the l i qu id  

H e l i u m  range have been developed (2,3) and used t o  study phonon in te rac t ions  

i n  sol ids .  The interact ions of these phonons, wi th  charge carriers,  thermal 

phonons, c rys ta l  impurities, dislocations and spin systems are  subjects 

of f r u i t f u l  study. 

The prime object of t he  present contract i s  an experimental study 

of the interact ion of microwave phonons w i t h  conduction electrons i n  

semiconductors. A considerable amount of work has been done both 

experiment a l l y  (4-6) and theore t ica l ly  (7-9) on the  interact ion of megacycle 

phonons i n  metals. I n  recent years many workers (10-17 have investigated 

both atteEmtl0Z and gain i n  semiconductors, partic-&arly CdS. I n  CdS 
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the e l e  tron-phonon interact ion i s  pr incipal ly  through the  p i  zoelectr ic  

e f f ec t ,  whereas i n  non-piezoelectric semiconductors t h e  interact ion i s  

pr incipal ly  through deformation potential  coupling. 

Calculations made by Spector (15) suggest t h a t  the electmn- 

phonon in te rac t ion  in non-piezoelectric semiconductors increases l i nea r ly  

w i t h  frequency i n  the high frequency region. This strong interact ion 

would produce a high attenuation of a phonon wave unless the electrons 

i n  the  so l id  are moving i n  the direction of t h e  ul t rasonic  wave wi th  a 

ve loc i ty  exceeding t h a t  of the  phonons. 

would be negative giving a gain i n  phonon energy. 

in te rac t ions  such a s  sca t te r ing  from thermal phonons: impurity scat ter ing,  

and c rys t a l  defect sca t te r ing  a re  a l so  sources of' at tenuation. Thus even 

though a high attenuation might be measured i n  a material, t he  corresponding 

gain which should occur when t h e  electron d r i f t  veloci ty  exceeds the  sonic 

ve loc i ty  might not be a s  high a s  expected on the basis of the  electron- 

phonon in te rac t ion  alone. 

In t h i s  case the  attenuation 

The other phonon 

The present study was directed primarily a t  the experimental 

invest igat ion of electron-phonon interact ions i n  111-V semiconductors a t  

9.3 Gc/sec. 

t o  study in some d e t a i l  the  charac te r i s t ics  of the  transducers being 

used t o  generate acoustic waves i n  t he  semiconductors. 

temperature var ia t ion  of 9.3 Gc/sec phonon attenuation i n  quartz and 

tourmaline grys ta l s  was measured. 

of these phonons in a high mobility 111-V semiconductor, InSb, were 

studied experiment a l ly .  

I n  the  course of the  research it w a s  considered worthwhile 

Thus the 

Conditions governing the propagation 

. 



I n  t h e  beginning of t h e  program it was decided t o  use transducer 

techniques which a re  already known ra ther  than t o  work on the  development of 

new techniques since there  a re  laborator ies  working on such developments. 

Two proven transducer techniques were set up i n  our laboratory t o  t es t  

t h e i r  appl icabi l i ty  t o  our program of investigation of electron-phonon 

interactions.  These two techniques fo r  generation of microwave phonons a re  

1) 

c rys t a l  under study 

piezoelectric excitation of a piezoelectric c rys ta l  bonded t o  the  

magnetostrictive exci ta t ion i n  a t h i n  ( 2 )  , and 2) 

ferromagnetic f i l m  (3, 17) 

The magnetostrictive exci ta t ion method has the  advantage over 

t h e  piezoelectric method of not being very dependent on temperature and of 

being able t o  produce both transverse modes and the compressional mode 

i n  the  same f i l m .  Furthermore a reproducible bond can be obtained i n  

evaporating the  film onto a well-cleaned polished surface. The 

piezoelectric method on the  other hand i s  independent of magnetic f ie ld ,  

and therefore t h e  magnetic f i e l d  can be t r ea t ed  as an independent parameter. 

It was decided therefore t o  make the  i n i t i a l  studies with the piezoelectric 

method using longitudinal waves i n  order t o  simplify the analysis of e f f ec t s  

i n  the semiconductor. 

1. Piezoelectric - exci ta t ion 

Two piezoelectric materials were examined f o r  use i n  t h i s  

program, quartz and tourmaline. Quartz has been used extensively a t  

B. 
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microwave frequencies t o  study the phonon-phonon interactions i n  i t s e l f  ( 2 , W  

Tourmaline has not been examinedbefore a t  these frequencies. 

performed (on quartz and tourmaline) under the present contract involved 

careful measurements of the temperature dependence of phonon attenuation 

a s  well as  of the var iab i l i ty  of efficiency of the  crystals. 

The studies 

The microwave equipment used f o r  these measurements i s  shown 

i n  block diagram i n  Figure 1. 

the photograph of the working setup shown i n  Figure 2. 

were a l l  made i n  the l iqu id  H e l i u m  cryostat 

pulses 0.6 psec wide a t  a repeti t ion r a t e  of 40 pulses/sec and a peak 

power of 5 kw were obtained from a Paradynamics Model X8gOA microwave 

signal source. 

measurements although it was actually variable fram 8.8 t o  9.4 Gc/sec. 

These pulses were attenuated by a t  l e a s t  20 db before entering the resonant 

reentrant cavity holding the  piezoelectric crystal .  The average power 

pumped in to  the  cavity was therefore < 120 mw. 

Most of t h i s  equipment can be seen i n  

The measurements 

seen in Figure 2. Microwave 

The frequency was held a t  9.3 Gc/sec fo r  most of the 

A 20 db isolat ion circulator (Rantec model CX-425) was used t o  

route the  microwave power in to  the cavity and to route the  cavity output 

signal t o  the  mixer-detector. 

was added t o  the receiver l i n e  t o  reduce the  amplifier saturation caused 

by the  power pulse leakage i n  the  circulator.  

A microwave diode switch (Arra model XllO) 

The reentrant cavity was fabricated out of brass and plated 

inside with s i lver  t o  increase the Q. A view of the cavity before f i n a l  
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Fig. 2 - Microwave phonon generation and detect ion equipment. 
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assembly i s  shown i n  Figure 3 along with a photo of the  cavi ty  assembled I 
onto the  waveguide with a quartz c rys t a l  plus InSb c rys t a l  i n  place. 

resonant frequency was adjusted a t  room temperature by adjust ing the  

depth of inser t ion of t he  c rys t a l  i n t o  the  cavity. 

measured using a frequency modulated klystron and a ca l ibra ted  wavemeter 

cavity.  

temperature was lowered t o  4.2 K. 

The 

This frequency was 

The resonant frequency usually sh i f ted  down about 25 mc when the 

0 

The microwave e l e c t r i c  f i e l d  inside the  cavi ty  i s  a maximum 

a t  the  end of t h e  center post where the piezoelectr ic  rod i s  inserted.  

Microwave power i s  converted t o  acoustic power a t  t he  end of the  c r y s t a l  

inside the  cavity by the  piezoelectr ic  e f fec t .  The acoustic wave thus 

generated propagates down t o  the  other end of t h e  crystal .  I n  the  tes ts  

on the  transducer c rys ta l s  there  was nothing attached t o  t h i s  other end, 

but i n  the  semiconductor s tudies  the  semiconductor was bonded t o  the  

other end. The acoustic wave was p a r t i a l l y  re f lec ted  and p a r t i a l l y  

transmitted a t  t he  bonded interface.  

both from the interface and from the other end of t he  semiconductor arr ived 

back a t  the  generating surface i n  the  cavity. Upon ar r iv ing  a t  t h i s  

surface, part of t h e  acoustic pmer  was converted back p iezoe lec t r ica l ly  t o  

microwave power where it was observed by t h e  detector system. 

most of the acoustic power was re f lec ted  back again such t h a t  multiple 

acoustic ref lect ions occurred i n  the  c rys ta l s .  I n  a l l  the  experiments 

made, t he  t i m e  duration of the  microwave pulse (0.6 ysec) was shorter  

than t h e  t i m e  of propagation of the acoustic wave through the  crystal .  

Thus the  re f lec ted  acoustic pulses 

However, 



F i g 1 . e  3a View of reent ran t  cavit:q sha.in kefore i i n r i l  z a a e ~ k , l y  i;:th 
quartz and InSb c r y s t a l  rods 

Figure 3b Cavity assembled onto waveguide with InSb bonded t o  
quartz  i n  place. 
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Thus the  acoustic echoes were observable a s  d i s t i n c t  pulses i n  the  

receiver. 

I n  order t o  measure the  attenuations involved i n  these experiments 

a calibrated microwave s ignal  generator was used a s  a comparator. 

( H e w l e t t  Packard S" Signal Generator Model 620A). 

s ignal  generator were adjusted t o  the  same width and frequency a s  the 

X890A pulses. These were fed i n t o  the  same superheterodyne receiver 

system a s  were the  re f lec ted  pulses from the  c rys ta l s .  

was used as  l o c a l  o sc i l l a to r  t o  obtain 30 mc IF  s ignals  which were then 

amplified and detected f o r  comparison on the oscilloscope. 

The pulses from t h i s  

A Varian X-13 klystron 

The 6 X ) A  signal  generator was a l so  used t o  ca l ib ra t e  t he  

attenuation of a l l  par ts  of the  microwave c i r c u i t r y  used i n  these experiments. 

The average power output of the  X890A signal  source was measured and 

monitored by a cal ibrated t h e m i s t e r  power meter (Hewlett Packard X486A 

and 431B). 

2. Magnetostrictive 

Although t h i s  method 

exci ta t ion 

was not used f o r  t he  measurements with the  

semiconductors during the f i rs t  year of t he  program the  equipment was s e t  

up f o r  i t s  use during subsequent phases of the program. I n  t h i s  case it i s  

t h e  microwave magnetic f i e l d  which i s  necessary f o r  t he  exc i ta t ion  so t h a t  

t he  strong e l e c t r i c  f i e l d  of the  reentrant  cavi ty  i s  not necessary. A 

rectangular TElO2 cavity was used with t h e  f i l m  placed i n  the  cent ra l  
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magnetic f i e l d  of the cavity. 

a s  t h a t  used f o r  t he  piezoelectric exci ta t ion method. 

approximately 3000 2 thickness was evaporated onto an AC cut quartz 

rod and tested i n  the  rectangular cavity. 

Figure 4 show the  acoustic echoes obtained f o r  th ree  d i f fe ren t  magnetic 

f i e l d  configurations. 

where the DC magnetic f ie ld  (Hd,) of 1.6 kgauss i n  the  plane of the  film 

was perpendicular t o  the  microwave magnetic f i e l d  (Hac). 

t ransverse mode can be seen i n  Figure 4b w i t h  H 

t o  Hac. 

p a r a l l e l  t o  Hac the longitudinal phonons generated a t  the magnetic "stripe" 

domain wal ls  became v i s i b l e  . ("I They are  not very large however because 

t h e  AC cut quartz c rys t a l  suppresses longitudinal waves . 

The microwave equipment was the  same 

A nickel film of 

The oscilloscope photos i n  

Both transverse modes a re  v i s i b l e  i n  Figure ha 

Only the  f a s t  

= 2.1 kgauss paral le l  

When Hdc was reduced from 2.1 kgauss t o  0.4 kgauss while s t i l l  

dc 

3 .  Power loss tests i n  tourmaline and quartz - 

a. Tourmaline 

It is known(*) t h a t  the attenuation of microwave phonons i n  

quartz i s  qui te  small below 20°K but rises very rapidly above this temperature. 

The at tenuat ion i n  quartz w i l l  be discussed fu r the r  i n  section B-4. 

In order t o  determine whether some other  piezoelectr ic  c rys t a l  could 

e f fec t ive ly  serve a s  a transducer a t  temperatures above the  usable 

l i m i t  f o r  quartz (about 35OK), t e s t s  were made w i t h  tourmaline c rys ta l s .  
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Figure 4 Acoustic echoes i n  AC cut quar tz  generated by magnetostrictive 
exc i ta t ion  of a t h i n  f i l m  of n i cke l  (T1. = f a s t  t ransverse  
wave, T2 = slow t ransverse  wave, L = longi tudina l  wave). 

I 
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A batch of 6 black tourmaline rods and another batch of 6 

green tourmaline rods were obtained from the  Valpey Crystal  corporation 

w i t h  following specif icat ions-  Length = 0.500" + 0.001", diameter = 

0.118~~ - + 0-OOl", rod axis para l le l  t o  the  crystallographic z-axis t o  

within 2 mint, and end faces polished f l a t  and p a r a l l e l  t o  500 8. 
The net puwer loss involved i n  the  acoustic t r ans i t i on  (frm 

microwave signal i n t o  t h e  cavity back again t o  a microwave signal out of 

t h e  cavity) f o r  t he  f i rs t  echo was measured a t  4.2OK f o r  a l l  but two of 

these rods: The r e s u l t s  a r e  given i n  Table I 

Table I 

Measured net  power loss involved i n  t h e  

acoustic t r ans i t i on  a t  9-3 Gc/sec for the first echo 
i n  green and black tourmaline rods a t  4.2OK. 

-- 
- ---- 

-- -- - 

Black Rod NO- Green 

1 90 db lo5 db 

2 > 109 db (crack) 83 db 

3 70 db 104 db 

4 ----- (crack) 105 db 

5 105 db (crack) 92 
6 ------ (crack) 109 db 

The measurements were made by comparison w i t h  the  s ignal  generator pulses. 

The numbers were obtained by calculating the input power f romthe  thermister 



power meter measurements 

i n  the  microwave system. 
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and using a l l  the  previously cal ibrated attenuations 

Four of the green tourmaline rods were f o u ~ d  t o  

have in te rna l  cracks. 

high attenuation. The other two were not tes ted .  Since the  black 

tourmaline c rys ta l s  a re  completely opaque it was not possible t o  t e l l  

i f  there  were any in t e rna l  cracks i n  these. Although no crack was observed 

i n  green tourmaline #1 before tes t ing ,  there  was a small one observable a f t e r  

the test a t  4.2OK. 

90 db. 

favorably with quartz, as  w i l l  be seen i n  Table 11. 

Two of these were t e s t e d  and found t o  have a very 

T h i s  i s  consistent with the  r a the r  poor loss f igure  of 

The power l o s s  of 70 db observed f o r  green rod #3 compares very 

b. guartz 

A batch of 10 quartz c rys t a l  rods were obtained from Indus t r i a l  

Optics Company, Bloomfield, New Jersey both f o r  temperature dependence 

of attenuation i n  quartz and f o r  use a s  transducers f o r  t he  semiconductor 

s tudies .  The specifications f o r  these rods were the  same as  f o r  the 

tourmaline rods except t h a t  t he  paral le l ism was t o  200 8 and the  rod was 

oriented along the x-axis. Each c rys t a l  was t e s t ed  a t  4.2OK i n  the  same 

way a s  the  tourmaline rods. 

The net power loss involved i n  the  acoustic t r ans i t i on  i n  both 

direct ions was measured f o r  these rods as  f o r  Tourmaline and the r e s u l t s  

are  shown i n  Table 11. 



Table I1 

Measured net power loss involved i n  the  acoustic 

t r ans i t i on  a t  9-3 Gc/sec f o r  the  first echo i n  

na tura l  guartz  rods a t  4.2OK 

-- 

Rod NO- 1 2  3 4 5 6 7 8 9 10 
86 68 69 69 74 8 1 71 7 l  69 76 N e t  Loss (db) 

Besides the  var ia t ion  i n  net loss from one c rys t a l  t o  another, there  was 

a considerable var ia t ion  i n  the echo pat terns  observed. 

t he  echo pat tern from any one c rys ta l  was not reproducible from one day 

t o  another. Figure 5 shows a case h is tory  f o r  Quartz rod#g a s  the rod 

was cycled repeatedly t o  4.2OK. 

temperature between the  f i r s t  and the  second and between t h e  3 rd  and 4th 

cycles. It was cycled from approximately 1W0K t h e  other times. 

qui te  apparent from Figure 5 t ha t  t he  echoes deteriorated considerably 

with each thermal cycle. 

while only 15 were v i s ib l e  in  the l a s t  cycle. Not only i s  there  a 

deter iorat ion i n  the  number of echoes but the  echo pat tern shows a s ignif icant  

change i n  t h e  locat ion of the mzxima and minima and t h e i r  r e l a t i v e  amplitudes. 

I n  a l l  the  thermal cycles, t h e  warming was slow (-several hours) and the  

cooling was f a s t  (-several minutes). 

Furthermore, 

The c rys t a l  was cycled from room 

It is 

I n  t h e  f i r s t  cycle 247 echoes were v i s i b l e  

The echo patterns for a l l  the  c rys ta l s ,  typ i f ied  by Figure 5 

f o r  c rys t a l  #9, exhibited the complicated s t ructure  of maxima and minima 
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100 psec / crn 

2nd. CYCLE 

2Opsec / cm 

3rd. CYCLE 

2Opsec / cm 

4 th. CYCLE 

lopsec / cm 

5th. CYCLE 

10 psec / cm 

Fig. 5 Degradation of 9.3 gc 
with thermal cycling to 

20psec I cm 

6th. CYCLE 

2 0 p s e c /  c r n  

acoustic echoes in quartz 
4.2"K. 
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usually associated with acoustic measurements a t  these frequencies. (2 1 

The interference pat tern i s  no doubt par t ly  due t o  the lack of exact 

parallelism of the  end faces. Huwever, if t h i s  were the  only cause 

then the  interference pattern would have a well  defined period with an 

exponential decay envelope fo r  the  maxima. The l imited f la tness  of 

t h e  faces  contributes t o  t h e  evident i r r egu la r i ty  i n  the interference 

pattern.  It is very l i k e l y  t h a t  s t ruc tu ra l  s t r a ins  and nonuniformities 

contribute a l s o  t o  t h i s  effect .  

during thermal cycling as  seen by the  la rge  changes i n  echo pat tern observed 

i n  Figure 5. 

of s t r a i n s  i n  the  c rys ta l  which reduces t h e  parallelism of the  end faces. 

The understanding of t h e  nature of these interference patterns i s  qui te  

Evidently some s t ruc tura l  changes occur 

It is  possible tha t  a l l  t he  changes a re  due t o  changing 

incomplete as has been pointed out by Tepley. ( 6 )  

4. Temperature dependence of attenuation i n  tourmaline and guartz - - - 

The temperature of t h e  c rys ta l s  i n  these experiments was measured 

with the  use of a doped germanium resis tance thermometer Model CG3, obtained 

from Radiation Research Corporation, Westbury, New York. T h i s  thermometer 

was cal ibrated against a AU-Co vs Cu thermoccdple. 

Au-Co wire (obtained from Sigmund Cohn Corp., M t .  Vernon, N. Y.) was of t he  

The 0.005" diameter 

composition 2.11Atomic per cent Cobalt as  prescribed by Pawell and Bunch. (20) 

Two thermocouple junctions were immersed i n  l i qu id  Helium and l iqu id  

Nitrogen respectively and the EMF measured. The value obtained agreed 
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exactly w i t h  t he  EMF difference f o r  these temperatures as  published by 

Powell and Bunch. Thus t h e i r  cal ibrat ion data was used a s  the 

cal ibrat ion f o r  t h e  thermocouple. 

During the  attenuation measurements t h e  G e  thermometer was 

inser ted i n  a hole i n  the brass block of t h e  resonant cavity (see Figure 3b) 

while a heater r e s i s to r  was attached t o  the  bottom of the  cavity. The 

temperature was adjusted by adjusting the  current i n  the  heater and the  

posit ion of the  cavity above the  l iqu id  helium level .  

were thus obtained with an absolute accuracy of about 1 K and a r e l a t ive  

accuracy of 0.1K. 

lack of certainty of t he  temperature of t h e  c rys t a l  i t se l f  a s  compared 

t o  the  temperature a t  t he  thermometer. 

thermometer i s  shown i n  Figure 6. 

Equilibrium temperatures 
0 

0 The l imi ta t ion  i n  the  absolute accuracy i s  due t o  the  

The cal ibrat ion of the  CG3 

a. Tourmaline 

Green rod number 3 and black rod number 2 were used i n  making 

the measurements of temperature var ia t ion of the  attenuation. These were 

respectively the  best  of t h e i r  batches. 

green and a black tourmaline rod a t  4.2 K are  shown i n  Figure 7. 

Typical echo patterns f o r  a 

0 

The attenuation as a function of temperature was obtained by 

0 measuring the attenuation r e l a t ive  t o  t h a t  a t  4.2 K. 

green tourmaline #3 and black tourmaline #2 a re  shown i n  Figure 8. 

The r e su l t s  f o r  

It i s  
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Fig. 6 Calibragion of CG3 Ge Xesistance thermometer in K. 
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Green Tourmaline $3 

Black Tourmaline #5 

Figure 7 Typical  echo pa t t e rns  f o r  9.3- Gc/sec phonons i n  tourmaline a t  
4.2OK 

I 

a 
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evident tha t  t he  temperature dependence of t h e  two are  very similar,  even 

though the  net power losses  f o r  the  f i rs t  echo given i n  Table I d i f f e r  by 

1-3 db. Several echoes were used i n  determining the  attenuation. A t  the  

higher temperatures, only the  f i r s t  echo was v i s ib l e  and so  only t h i s  echo 

was used. A t  t h e  lower temperatures, however,since more echoes were 

present, they were used t o  obtain more accurate determinations of the  

attenuation per cm. 

discussed i n  more de t a i l  i n  comparison w i t h  t he  temperature dependence 

of quartz. 

The temperature dependence of the  tourmaline w i l l  be 

b. Quartz 

Measurements of t h e  temperature dependence of 9.3 Gc/sec 

acoustic attenuation were made on Quartz rods #4 and #9. Such measurements 

over a l i m i t e d  dynamic range so  t h a t  these (21,22) have been made by others 

data served a s  a check of the  experimental procedure against the  r e su l t s  

of other investigators. Our measurements considerably expand the dynamic 

range of the measurements compared w i t h  the  previous ones. 

show the  resu l t s  a t ta ined f o r  quartz along wi th  a comparison wi th  t he  data 

of Pomerantz and Nava e t  a1 

green tourmaline. It i s  quite evident t ha t  although the  slopes for quartz 

and tourmaline a re  approximately the same a t  lower temperatures the slopes 

d i f fe r  ~ a r k e d l y  a t  the  higher temperatures. It i s  evident a l so  tha t  green 

tourmaline can be useful as a transducer up t o  a much higher temperature than 

quartz . 

Figures 8 and 9 

a t  9 Gc/sec and w i t h  our r e su l t s  f o r  

II 
I 
I 
I 
I 
II 
I 
I 
I 
I 
II 
1 
I 
I 
I 
I 
I 
I 
I 
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The echo pattern f o r  quartz c rys t a l  #4 allowed no echo 

beyond the f i f teen th  t o  be sui table  f o r  attenuation measurements. Thus 

t h i s  echo was followed up t o  24.9 K a f t e r  which it became too small t o  

measure. 

the  second up t o  36.9OK and the  f irst  up t o  44.loK. 

data for t h i s  c rys ta l  a t  the  lower temperatures i n  Figure 8 was l imited 

by the  - + 1 db accuracy i n  making the  s ignal  comparison measurement. 

c rys ta l  #9, which exhibited the  la rges t  number of echoes (247) i n  i t s  

i n i t i a l  t e s t ,  was chosen t o  extend the  measurements so t h a t  the  attenuation 

of one of' the l a t e r  echoes could be followed. This would y ie ld  a much 

higher db/cm accuracy than was possible w i t h  the  f i f t een th  echo i n  c rys t a l  

#4* 

a very small attenuation/cm would s t i l l  represent a ra ther  large absolute 

attenuation and could be measured w i t h  good accuracy.) 

0 

The s ix th  echo was followed up t o  28.6OK, t he  t h i r d  up t o  33.8OK,  

The accuracy of the 

Thus 

(The X)Oth echo e.g. would represent a 508 cm acoustic path so t h a t  

When c rys t a l#g  was cooled a second t i m e  ( a f t e r  the  i n i t i a l  t e s t )  

i n  order t o  make temperature var ia t ion measurements using the  200th echo, 

it was found tha t  a l l  the  echoes beyond the  104th had disappeared as  w e  

noted i n  Figure 5. The 90th echo was therefore used t o  obtain t h e  data 

shown f o r  crystal  #9 i n  Figure 9. 

temperature dependent part  of t he  attenuation i s  rather  independent of the  

par t icu lar  c rys ta l .  

It i s  evident from t h i s  data t h a t  t he  

Pomerant z (") has made some measurements of microwave phonon 

attenuation a t  9.0 G C / S ~ C  using magnetostrictive excitation of Permalloy 
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films f o r  a number of different  crystals.  Quartz was included among these. 

X i s  published results f o r  longitudinal phonons showed a l i nea r  re la t ionship 

f o r  a l l  the  c rys ta l s  on the  log attenuation vs  log temperature plot. H i s  

data, however, covered only the attenuation range from 1 db/cm t o  10 db/cm. 

Our measurements f o r  quartz and tourmaline on the  other hand show a 

d i s t i n c t l y  non-linear r e l a t i m s n i p  f o r  both materials over the dynamic 

range measured (0.01 db/cm t o  20 db/cm). 

c rys t a l  t o  have a temperature dependence of T w i t h  n varying somewhat from 

one c rys t a l  t o  another. 

Pomerantz thus found each 

n 

A s  can be seen from Figure 8, his  data a re  

consistent w i t h  ours over t he  range which they cover, although w e  can 

de f in i t e ly  see a change of slope i n  our data which i s  not obvious i n  his. 

H e  obtained a l so  an empirical prescription r e l a t ing  the  Debye temperature 

01 the  material  t o  t he  acoustic attenuation. 

which the  attenuation i s  3 db/cm corresponds t o  0.1 6,. 

yield f o r  OUT measurement 0 = lgO°K f o r  tourmaline and eD = W O K  f o r  D 

quartz. 

tourmaline and quartz respectively. 

the Pomerantz prescription although Lord and Morrow 

254OK f o r  t he  Debye temperature of quartz. 

Thus the temperature a t  

Th i s  would 

The values given by Anderson are  769OK and 585OK f o r  

Th i s  i s  i n  sharp disagreement w i t h  

use a value of (24) 

Nava and co-workers(22)j on the  other hand, measured the  

attenuation of longitudinal waves i n  x-cut quartz a t  9.0 Gc/sec covering 

the range between 0.01 db/cm and 3 db/cm. 

i n  t h i s  range is  excellent exhibiting a l so  a T7 dependence. 

The agreement w i t h  our measurements 
4 Thus the T 

(22) are  dependence quoted by Pomerantz (21) and the T seen by Nava e t  a1  7 

both consistent w i t h  our data whose dynamic range covers both these experiments. 
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measured the  attenuation A t  a frequency of 1 Gc/sec, de Klerk (25 )  

i n  A1 0 

h i s  work it appears as though the  slope i s  uniform over a cer ta in  range 

over a wide dynamic range and observed a change of slope also.  In  2 3  

and then breaks sharply, while t h i s  i s  not t rue  i n  our measurements -- 
the  change seemed more gradual. 

a Tg dependence a t  lower temperatures w i t h  an abrupt change t o  T 

higher temperatures. 

T t o  T f o r  f a s t  shear waves, but he observed a constant T dependence 

H i s  data f o r  longitudinal phonons gives 

4 a t  

For transverse phonons he observed such a change from 
7 4 4 

for slaw shear waves. 

The change of slope i n  our tourmaline measurements i s  considerably 

n more s t r ik ing  than i n  the  quartz. Tourmaline shows a change i n  T from 

n = 7.3 - + 1.6 t o  n = 0.8 - + 0.1while  quartz changes from n = 7.0 f 0.5 t o  

n = 4.0 - + 0.5. The f a s t  change of slope observed i n  Tourmaline appears 

similar t o  that  seen by other investigators (18,26) a t  lawer frequencies 

i n  materials such a s  quartz, A 1  0 and MgO. 3 3  
f i r s t  time that  the  f la t ten ing  out of the  attenuation curve has been 

T h i s  appears t o  be the  

measured a t  a frequency above 3 Gc/sec. 

Landau and Rumer (27) worked out a quantum mechanical theory 

fo r  phonon-phonon scat ter ing involving three-phonon processes va l id  

when CUT >> 1 ( 7  i s  the thermal relaxation time calculated from 
2 

K = 1/3 Cvc T ,  K = thermal conductivity, C 

sound velocity). For Quartz a t  40°K, T = 2.2 x 10 sec. Thus a t  

9.3 Gc/sec acd 40 K, CUT -13. 

and so the  theory would be expected t o  apply. 

measurements on tourmaline are  not available so t h i s  estimate cannot be 

= specif ic  heat, c = average 
V 

- 10 
0 It i s  ever, l i r g e r  a t  Imer  temperatimes 

Thermal conductivity 
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4 made for tourmaline. 

attenuation which agrees w e l l  with our quartz measurements above 35OK. 

The theory predicts a T dependence f o r  the  

However, Landau and Rumer (27)  indicate t h a t  t h e i r  theory should 

apply only t o  transverse acoustic phonons and not t o  compressional phonons. 

This i s  because the  conservation of energy and momentum i n  a three-phonon 

process requires t h a t  a l l  three phonons cannot have the same propagation 

ve loc i ty  unless they a r e  exactly co-linear. Assuming t h a t  thermal phonons 

a re  only longitudinal, t h e  longitudinal acoustic phonons could not s a t i s f y  

t h i s  condition with a f i n i t e  interact ion so l id  angle. 

Ciccarello and Dransfeld ( 2 6 )  have pointed out t h a t  due t o  the  f i n i t e  

l i fe t imes  of t he  thermal phonons the  resul t ing quantum mechanical 

uncertainty allows non c-linear longitudinal phonons t o  be involved i n  

three-phonon processes. 

f o r  longitudinal phonons i s  very nearly the  same a s  for transverse phonons 

On the  other hand 

In  f a c t  they f ind  t h a t  t he  in te rac t ion  so l id  angle 

f o r  a l l  T, as  long as  UT > 1. 

temperatures. They measured a 

longitudinal waves as  evidence 

longitudinal waves. They a l so  

4 Thus they expect a T dependence a t  a l l  

T dependence a t  3 Gc/sec i n  A 1  0 f o r  

for a strong three-phonon interact ion f o r  

obtained f o r  M g O  a do7 behavior f o r  

4 
2 3  

compressional waves and 9 *3 for  transverse waves . 
Woodruff and Ehrenreich(28) approached the  theory of phonon- 

phonon scat ter ing from the l inearized Boltzmann equation and obtained 

r e s u l t s  using approximations which a re  va l id  only i n  the  region LUT < < 1 

(high temperatures, low frequencies) . However they f e e l  t h a t  t h e i r  results 

a re  a l s o  va l id  f o r  (UT > 1 since t h e i r  r e su l t s  reduce t o  t h e  same dependence 

on LU and T as obtained by Landau and Rumer (27)  i n  t h i s  range. They also 
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obtain good agreement with the  quartz data a t  1 Gc/sec of Bommel and 

Dransf e ld  (”) over t h e  e n t i r e  range of measurements covering both ccrr > 1 

and UT < 1. 

These theories  can therefore  qua l i ta t ive ly  account for  the  
4 f l a t t en ing  out of the slope f o r  tourmaline and fo r  the  T 

quartz above 35OK. 

quartz and tourmaline observed i n  our measurements a t  lower temperatures 

( 2 5 )  i n  A 1  0 and the  T behavior seen by de Klerk 

dependence of 

However they f a i l  t o  account for the  T7 behavior i n  

a t  1 Gs/sec. 9 
2 3  

A t  35°K the quant i ta t ive agreement of our quartz measurements 

w i t h  the  Landau and Rumer theory i s  reasonable. 

t he  r e s u l t s  of th i s  theory i n  the form, 

Klemens (29’ has given 

1 = 6 0 r  2 K T  (-2 ) (;) 
If Mvave ‘D 

where : 

= mean free path of t he  acoustic phonon % 
r = Grueneisen constant 

-16 K = Boltzmann constant = 1.38 x 10 erg/deg Kelvin 

T = Temperature i n  degrees Kelvin 

M = average atomic mass of c r y s t a l  

V = average sound veloci ty  

OD = Debye temperature 

v = sound veloci ty  of acoustic wave 

ave 

cu = angular frequency of acoustic wave 

1 
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The reciprocal  mean free path l/If represents the f r ac t iona l  

nmber  of phonon interact ions per cm. i. e. 

Integrat ing aver t h e  phonon path length, L, w e  get  

The attenuation i n  db/cm is  defined as 

a! = -4.34 (l/Q 

- 24 The average a t m i c  mass of quartz (Si0 ) is  M = 20 x 1.6 x 10 
2 

gm = 3 .2 x 

Anderson (23)  , vave = 6.03 x lo5 cm/sec and the Debye temperature OD = 585%. 

The Grueneisen constant i s  obtained from the formula 

gm. The average sound veloci ty  i n  a! quartz i s  given by 

(30) 
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gv Y =  
KCV 

where : 

p = coeff ic ient  of cubical expansion 

V = molar volume 

C = molar heat capacity 

K = compressibility = reciprocal of bulk modulus 

V 

Values f o r  these constants a t  room temperature f o r  quartz (23,311 

are  @ = 5.1 x LOm5, V = 22.6 cm 3 /mole, Cv = 6.18 x 10 8 erg/mole, 

K = 2.65 x 10- 

t h a t  t he  Grueneisen theory i s  exact and therefore i s  independent of the  

temperature, although t h i s  i s  not s t r i c t l y  true'30). W e  note here t h a t  

Woodruff and Ehrenreich(*') t rea ted  y as an adjustable parameter i n  f i t t i n g  

12 2 cm /dyne. Thus y = 0.7. The assumption i s  made here 

t h e i r  theory t o  the quartz data of Bommel and Dransfeld (18) . Their f i t s  

lay  between values of y = 0.45 t o  y = 0.87. 

The attenuation f o r  quartz a t  9.3 Gc/sec i s  thus predicted as  

a = 1.27 x T4 db/cm ( 5 )  

A t  T = 35OK t h i s  yields a = 1.90 db/cm. 

a t  35OK i s  7.2 db/cm. 

O u r  measured value from Figure 8 

The difference i s  actual ly  w e l l  within t h e  uncertainty i n  the  

data used i n  deriving ( 5 )  since, e.g. Lord and Morruw '24) have values of 

1 
(4) C 
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come from thermal phonons w i t h  frequencies wth 1: 6m/fi ra ther  than 

%h - - 4K!I?/li as was the  case i n  deriving eq. (1). Klemens concluded t h a t  

-31- 

I 

t 

I 
1 
I 

8 
= 254 '~  (instead of 583OK) and Cv = 4-43 x 10 erg/mole (instead of 

Using these values would give Q! = 57.4 db/cm a t  
*D 

8 6.18 x 10 erg/mole). 

Thus t he  attenuations observed i n  our experiments are cer ta inly 

within the order of magnitude expected f o r  three phonon processes. 

However, a s  pointed out above, t he  T behavior i s  not accounted for .  

Klemens 

phonon processes. He showedthat 

7 

discussed the  contribution t o  the  attenuation made by four 

~ where P (IT) i s  the mean free pa th  of an acoustic phonon ending. i n  a 
~ 

f 

four phonon interact ion and P f ( I I I )  i s  the mean free path f o r  a three phonon 

8 process given by eq. (1). This would thus give a T dependence, but w i t h  

~ 

I 
t he  10''' fac tor  would be much too  s m a l l  t o  account for t he  observed 

I 
attenuations. 

KLemens (29) a l so  suggested i n  a note added i n  proof than a t  lower 
I 

temperatures the  major contribution t o  the  three phonon interact ions 

I observation w i t h  A 1  0 . O u r  T' behavior co1il.d be the  intermediate region I 2 3  

I 
9 4 

between t h i s  T dependeuce and t h e  T dependence a t  higher temperatures. An 

in te rpre ta t ion  along these l i n e s  is being examined i n  greater de ta i l .  
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The f la t ten ing  of the attenuation i n  our tourmaline measurements 

would seem t o  imply t h a t  UT < 1 i n  the  region above about lOoK but a 

ver i f icat ion of t h i s  would depende on thermal conductivity measureme.nts 

on tourmaline which a s  f a r  a s  we know a re  not presently available.  

M a r i ~ ' ~ ~ ) ,  a s  well  as Ciccarello and Dransfeld (26) took i n t o  

consideration the  quantum mechanical uncertainty which r e su l t s  i n  a re laxat ion 

of t he  conservation of energy and momentum conditions f o r  three phonon 

processes. However, he a l so  took i n t o  account the dispersion f o r  thermal 

phonons, which was ignored by Ciccarello and Dransfeld(26). H e  got the  
4 r e su l t  t h a t  i n  thevicini ty  of 40°K the  dependence should go a s  T 

it should begin t o  f a l l  off f a s t e r  a t  lower temperatues, i n  qua l i ta t ive  

but 

agreement with OUT resu l t s .  He derives an expression f o r  the attenuation 

where : 

s1 
1 
4 
I 
I 
1 
I 
I 

p = density of c rys t a l  

is1 

L = average l a t t i c e  spacing 

T = mean l i fe t ime of thermal phonons 

6 = Planck's constant divided by ZIT 

Values of attenuation calculated from the  expression yield 

= an average of t h i r d  order e l a s t i c  constants 2 

3.52, 0.98, 0.091, and 1.57 x LOe3 db/cm a t  40°, 30°, ZQo, and lOoK 

I respectively. These values a re  generally lower than our measured values. 

7 Also the  f a l l  off a t  lower temperatures i s  not a s  f a s t  a s  the  T which we measure. 
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C. Crystal  Preparation for Electron-Phonon Interaction Studies 

1. Indium Antimonide 

During the course of the  program four separate crystals of InSb 

were obtained from Cminco Products, Inc. , Spokane, Washington. 

specifications indicated by the supplier for  these crystals are noted i n  

Table III. 

The 

Tab le  I11 

Manufacturer's specifications for  InSb crystals  

78OK 
3 OO°K 

% 
(cm'/co~l) 

P 7 9OK 

( Q  4 30O0K 

P 78OK 

( e m  /volt see) 3OO0K 

78OK Ne 
1 3 OO°K 

2 

A 

n 

4 7.3 x 10 

0 0127 
4.0 10-3 

5 
4 

5.7 x 10 

7.7 x 10 

5.6 x 
2.0 x 10 16 

B 

n 

4 (7.4-10.0)~ 10 

370 

(0.07-0.16) 
5.0 10-3 

>5.0 x i o  5 
4 7.4 x 10 

13 (6.3-8.4)~ 10 
16 1.7 x i o  

C 

n 

4 (1.8-3.1)~ i o  
370 

(0.03~0.04O) 

5.0 10-3 

>5.0 x i o  
7.4 x 10 

5 
4 

1 4  (2.0-3.5)~ i o  
1.7 x i o  16 

D 

n 

4 4.5 x 10 

360 

5.0 10-3 

>5.0 x 10 5 

0.09 

4 

1 4  
7.2 x i o  

1.4 x 10 
16 1.7 x i o  

a. Crystal A 

The r e s i s t i v i t y  and H a l l  coeff ic ient  of two samples cut from t h i s  

crystal were measured a t  300°K and 78OK. They agreed reasonably w e l l  



-3 4- 

w i t h  t he  manufacturer's specifications (measured values: p = 0.18 - 0.22 

and % = 1.11 - 1.15 x LO5 a t  78OK - yielding CI = (5.33 - 6.09) x 10 5 and 

N (5.44 - 5.62) x e 

The or ientat ion of t he  (111) axis  of t h i s  c rys t a l  was determined 

using a back re f lec t ion  Laue x-ray d i f f rac t ion  camera. 0 t o  within + 2 

With an ultrasonic cu t te r  the c rys ta l  was cut i n t o  two 5/8" lengths w i t h  

t he  cuts para l le l  t o  the  (111) planes. 

i n to  cylindrical  rods 3 mm i n  diameter and 5/3" long again w i t h  t he  ul t ra-  

sonic cut ter  maintaining the  - + 2 

(111) axis  and the rod axis.  

wax in to  3 . 2  mm 

thick glass  disks. 

polish t h e  ends of the  rods. Optical interferometer methods were used on 

the  disks during the  polishing operations t o  insure t h a t  the  end faces 

of the rods were held within 6 seconds of parallelism which i s  equivalent 

t o  about 0.08 acoustic wavelengths i n  InSb. 

- 

These lengths of c rys t a l  were then cut 

0 accuracy of alignment between the  

These rods were then mounted w i t h  sealing 

diameter holes i n  the  centers of two inch diameter, 3/8" 

These d isks  were then opt ical ly  polished so  as  t o  

I 

The rods thus obtained from crys ta l  A were t r i e d  for  acoustic 

propagation of longitudinal waves a t  9.3 Gc/sec by several  transducer 

bonding methods. 

acoustic propagation through the crystal .  

t o  perform a l l  of these t e s t s  i s  t h a t  described i n  Section Ei-1 and shown 

None of them were successful i n  obtaining any detectable 

The basic  equipment used 

i n  Figure 1 and 2. 

The first method attempted involved attaching the  quartz 

transducer rod t o  the InSb by a method which had been found very successful 
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f o r  ultrasonic propagation i n  bonding tests between two quartz rods 

(result ing i n  nearly lossless bonds). 

two polished surfaces together without any bonding agent between the 

surfaces but w i t h  a ring of Epoxy cement around the  jo in t  as i l lus t ra ted  

i n  Figure loa. 

difference i n  contraction caused the InSb t o  break each time. 

This consisted of pressing the  

This failed i n  bonding quartz t o  InSb since the 

The second method involved an attempt t o  overcome t h i s  

difficulty.  As i s  shown i n  Figure lob, a frame of titanium was constructed 

such tha t  it was glued t o  t h e  walls of two quartz transducers but not 

t o  the InSb. 

held onto the InSb under pressure. Titanium was chosen because i t s  

coefficient of expansion l i e s  between tha t  of quartz ( in  the  x-direction) 

and InSb. Thus by adjusting the length of the titanium frame relat ive t o  

the  InSb and the quartz it i s  possible t o  match the  t o t a l  contractions of 

the frame and the rods. 

InSb crystal  was observed i n  th i s  test. 

series of reflected echoes from the quartz-InSb interface indicating tha t  

the  microwave equipment was working properly. Two cavities were used f o r  

th i s  t e s t  on both ends of the quartz-InSb-quartz assembly. 

detected no echoes from the InSb ei ther  i n  t h e  transmitting cavity o r  the 

receiving cavity. 

o r  i n  the InSb itself. The sensi t ivi ty  of the system i s  such tha t  t h i s  

represents a minimum attenuation of 40 db i n  the InSb and/or bonds. 

The frame was glued on while the quartz transducers were 

N o  transmission of ultrasonic waves through the 

The receiver detected a whole 

The receiver 

Thus the sound was highly attenuated either i n  the bonds 
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Epoxy Cement 

quartz r) 4 InSb 

(a) Epoxy around joint but not between surfaces. 

(b) Titanium frame holds rods together with no 
epoxy between the rod surfaces. 

Epoxy Cement 

(c )  Epoxy between the surfaces. 

Fig.10 TRANSDUCER BONDING METHODS 
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The th i rd  method consisted of straightforward bonding of InSb 

t o  quartz using a very t h i n  f i l m  of Epoxy Cement between the  surfaces 

as i l l u s t r a t e d  i n  Figure loco 

the quartz t o  the Insb wi th  t h e  interface under microscope observation. 

Th i s  insured elimination of a l l  bubbles i n  the interface,  thus improving the  

uniformity of the bond. 

l o s s l e s s  transmission of 9.3 Gc/sec phonons i n  bonding tests w i t h  two 

quartz rods. The same procedure was followed as  i n  the second method 

and again no acoustic transmission was observed through InSb. The test  

w a s  performed w i t h  an improved sens i t i v i ty  such tha t  a minimum of 55 db 

loss was observed i n  the  InSb and/or t h e  bond. 

Insb t h i s  would represent an attenuation greater  than x> db/cm. 

This technique f o r  bonding involved pressing 

This method has a l so  proved successful f o r  near 

If it were so le ly  i n  t h e  

The fourth method amounted t o  simply inser t ing  the Insb 

rod d i r ec t ly  i n t o  the reentrant  cavity, doing away w i t h  both quar tz  

transducers. 

piezoelectr ic  coeff ic ient  of InSb would be large enough t h a t  it could 

ac t  a s  i t s  uwn transducer. T h i s  has the  advantage of not involving 

any bonding problems. 

inversion symmetry and is therefore expected t o  be piezoelectric,  the 

binding is la rge ly  covalent and one expects the piezoelectr ic  coeff ic ient  

t o  be small. No transmission or r e f l ec t ion  of acoustic waves was 

observed i n  t h i s  test. 

Th i s  a t t eap t  was based on the poss ib i l i t y  t h a t  the 

However, even though InSb lacks a center of 



The lack of a detectable transmitted s ignal  i n  the  second 

and t h i r d  methods l e d  us t o  suspect t h a t  perhaps the  bonds were not a t  

f a u l t  but t ha t  the  s ignal  was highly attenuated i n  the InSb. 

order t o  be s a t i s f i e d  t h a t  w e  were not suffering ser iously from off 

ax is  propagation ( 3 3 )  due t o  poor alignment of t he  (111) axis  and the 

polished surface normal (+ - 2'), w e  decided t o  make a b e t t e r  alignment. 

W e  therefore obtained another boat grown InSb c rys t a l  re fe r red  t o  a s  

c rys t a l  B whose specif icat ions are  shown i n  Table 111. 

I n  

The method used t o  obtain b e t t e r  alignment involved the  

use of a precision x-ray spectrogoniometer shown i n  Figure 11. The x-rays 

from a Cu target  were collimated onto the  end of t he  InSb rod and the  

detector collimator was ro ta ted  t o  the  correct  posit ion t o  pick up the  

f i rs t  Bragg angle sca t te r ing  of the  copper K 

i n  InSb. The goniometer holding the c rys t a l  was then rotated through 

i t s  two degrees of freedom t o  maximize t h e  x-ray counts i n  the  geiger tube. 

Th i s  established the  (111) axis  as  the  b i sec t e r  of the source and detector 

collimator angle. 

behind the  source collimator and replaced by a l i g h t  source. A photo- 

mul t ip l ie r  tube was placed behind the  detector collimator instead of t he  

geiger tube. The c rys t a l  goniometer was again ro ta ted  through i t s  two 

degrees of freedom until  t h e  l i g h t  col lected from specular re f lec t ion  

from the  polished surface was a maximum. The difference between the  

two sets of readings on the  c rys t a l  goniometer represented the  angular 

deviation, 6, between t h e  (111) axis  and the  surface normal. 

l i n e  from (111) planes a 

Then t h e  x-ray tube was removed from i t s  locat ion 

b. Crystal  B, 

-3 8- 
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. 

Fig. 11 - X-ray spectrogoniometer with crystal in place. 
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The InSb rod with i t s  glass  disc was then removed from the  

spectrogoniometer and repolished t o  remove t h i s  angular difference.  

The e n t i r e  process was again repeated u n t i l  6 was less than 3 minutes 

of arc.  Finally the reverse end of t h e  rod was polished by the  method 

1 
t 

described e a r l i e r  using opt ica l  interference t o  make the  reverse end 

pa ra l l e l  t o  t h e  other end t o  within 6 seconds of arc.  

Two t e s t s  of c r y s t a l  B using the  t h i r d  transducer method 

described f o r  c rys t a l  A were performed with equally negative resu l t s .  

I n  the second t e s t  a voltage pulse was applied across the  InSb during 

the  micruwave pulse i n  t h e  hope of amplifying any s ignal  i f  it were 

present. In order t o  expect any amplification the  electron d r i f t  

I 
I 
1 
I 

veloci ty ,  v , produced by the  applied voltage pulse must exceed the  D 
5 (34 1 sonic veloci ty  vs i n  InSb. Since v = 3.58 x 10 cm/sec i n  InSb , 

S 
I 
I 
i 
1 
1 
I 
I 
I 

5 w e  attempted t o  apply a voltage pulse such t h a t  vD = 

cm/sec. To estimate the  voltage required we need t o  knuw the  mobility 

a t  4OK. According t o  data presented by H i l s u m  and Rose Innes 

coefficient changes very l i t t l e  from 73OK t o  4OK and t h e  conductivity 

= 7.76 x 10 

05 1 , the  Hal l  

goes down by a f ac to r  of 33. Thus the  mobility should go dawn by the  

4 same factor  and we would expect therefore  a mobility of p = 1.5 x 10 

cm2 (vo l t  see)" a t  4OK. 

45 v o l t s  across a sample 0.86 cm long. 

yielding a res is tance of 60n f o r  the  3 mm dia rod. 

not 

the  crystal .  

100,000R (which was not present i n  the  range 77OK - 3OOOK). 

e 

Thus E = v /p = 52 volts/cm requiring about 

The r e s i s t i v i t y  would be 4.9ncm 

o e  

These values do 

agree with the  values which w e  obtained when w e  applied pulses t o  

With pulses below 10 v o l t s  there  was a res is tance of about 

However, 
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above 10 v o l t s  t h i s  res is tance broke down and dropped t o  1 ohm such 

t h a t  up t o  80 v o l t s  the  resistance remained a t  t h i s  value. The leads 

had been soldered w i t h  pure Indium using ruby f l u x  a f t e r  cleaning the  

contact area w i t h  f i n e  sandpaper. 

Later, checks of the r e s i s t i v i t y  and Hall  coeff ic ient  of two 
0 0 samples cut from crys t a l  B were made a t  78 K and 300 K. 

were soldered u l t rasonica l ly  w i t h  pure Indium and no flux. 

shawed a change of sign i n  % between 3OO0K and 73OK indicating t h a t  

t he  c rys t a l  was ac tua l ly  ptype rather  than n-type as specified by the  

manufacturer. 

unless very heavily doped). 

a l so  measured between 4OK and 265OK, yielding exactly the type of var ia t ion  

The leads 

The r e su l t s  

( ~ n s b  is  always in t r in s i ca l ly  n-type a t  room temperature 

The temperature var ia t ion  of r e s i s t i v i t y  was 

expected of p-type mater ia l35  0 . The results are  shmn i n  Figure 12. 

Th i s  accounted f o r  the  high resis tance seen a t  4.2OK. 

The lack of observed acoustic propagation i n  the InSb c rys t a l  

l ed  us t o  suspect strong attenuation due t o  interact ions w i t h  d is locat ions 

i n  the crystals .  

dis locat ions by chemically etching the material  long enough t o  polish off 

any surface dis locat ions produced i n  polishing. 

standard etchant solution(36),  CP4A (3 par t s  48%HF, 5 parts  68RmO3 and 

3 parts g l a c i a l  TcoofI) f o r  10 seconds. A density of grown-in dislocation 

etch p i t s  of 10 /cm was observed (Figure l3a) .  

W e  examined a sample cut from c rys t a l  B f o r  grown-in 

This was done using a 

6 2  
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6 2  
8. Crystal B, 10 /em 

2 b. Crystal C, 43/cm 

Fig. 13 - Dislocation e tch  pits produced in InSb crystals using CP4A 
etchant for 10 sees.  MEgnification 625~. 
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c. Crystal C 

Although it i s  possible t o  zone ref ine a boat-grown c rys t a l  t o  

a higher purity than a pulled crystal ,  the  boat-grown crys ta l  tends t o  

have a much higher dislocation density. It was therefore decided t o  

obtain a crystal  which was grown by the  Czochraliski pull ing method. 

This i s  crystal  C l i s t e d  i n  Table 111. 

10 seconds on c rys ta l  C a s  on c rys ta l  B and the  photo of some of t he  

resu l tan t  etch p i t s  i s  shown i n  Figure l3b. The density measured was 

45/cm . 
dislocation density, then t h i s  c rys ta l  should be much be t te r .  Considerable 

unexpected d i f f i c u l t i e s  were experienced i n  t h e  cut t ing,  aligning, and 

polishing of c rys ta l  C. 

t o  obtain a complete rod without breaking during the cut t ing process. 

This d i f f icu l ty  was not experienced a t  a l l  with c rys t a l  B although it 

had been experienced t o  some extent with c rys t a l  A. Final ly  two rods 

were obtained. Huwever, during the  coarse polishing the  rods seemed t o  

develop small t r iangular  chips i n  the  surface. The t r iangular  chips 

were character is t ic  of cleavage along three (110) surfaces, each one making 

an angle of' 35 

since (110) planes a re  known cleavage planes i n  InSb. 

polishing the surface became concave. 

surface f o r  L'ia.t.ness with an opt ica l  f l a t .  

were observed on the  InSb surface. A l l  of t h i s  behavior, which was not 

experienced i n  c rys t a l  B seemed t o  indicate  tha t  c rys ta l  C was considerably 

so f t e r  than c rys ta l  B. 

The same etchant was used f o r  

2 I f  t h e  high attenuation i n  Crystal B was due t o  the  high 

I n  the  ul t rasonic  cutt ing,  it was very d i f f i c u l t  

0 with the  (111) polished surface. This i s  not surprising 

During the  f ine  

This was observed when checking the  

Ab~2-b  3 or 4 iz terference rings 

1 
1 
1 
I 
I 
1 
I 
I 
I 
I 
I 
I 
1 
I 
I 
1 
I 
1 
1 
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Slower polishing speeds were t r i e d  w i t h  no signif icant  

improvement i n  the  polishing character is t ics .  A so f t  lead glass obtained 

from Unertyl Optical Co. was t r i e d  w i t h  success i n  conjunction w i t h  

slower polishing speeds. 

having the  surfaces f l a t  t o  

"his f igure  f o r  the parallelism represents about 0.6 acoustic wavelengths 

and therefore  w e  would expect ra ther  la rge  interference effects .  

Finally a c rys ta l  3.17 mm long was obtained 

300 1 and pa ra l l e l  t o  20 seconds of arc. 

Final ly  9.3 Gc/sec phonons were observed t o  propagate i n  t h i s  

c rys ta l .  The results w i l l  be discussed i n  Section D. However, the 

c rys t a l  was too  short  t o  e f fec t ive ly  at tach current leads t o  the  ends 

t o  test  the  in te rac t ion  of t h e  phonons w i t h  conduction electrons. It 

must be remembered tha t  the leads cannot be attached t o  the  end faces 

of the c rys t a l  since these surfaces must be kept i n t a c t  f o r  acoustic 

transmission and ref lect ion.  

on the  walls of the crystal .  On such a short  c rys t a l  the distance between 

leads would thus be too  short compared t o  the diameter of the crystal .  

Thus they have t o  be attached near the ends 

d. Crystal D - 

A four th  InSb c rys t a l  was purchased, again Czochralski grown, 

but l a rge r  than c rys t a l  C so tha t  rods long enough t o  a t tach current 

. leads could be obtained. The r e s i s t i v i t y  f o r  t h i s  c rys t a l  was a l s o  

measured between 4.2OK and 272OK and although the  r e s u l t s  were not 
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i n  good agreement with the  manufacturer's specif icat ions they were, 

however, charac te r i s t ic  of n-type mater ia l  ( 3 5 )  . The r e s i s t i v i t y  

measurements are  shown i n  Figure 12. 

With the previous c rys ta l s ,  the  x-ray spectrogoniometer (Fig. 11) 

had been used only for the f i n a l  alignment of the c rys t a l s  f o r  polishing 

while the h u e  d i f f rac t ion  camera had been used f o r  t he  i n i t i a l  align- 

ment f o r  cutting. With c rys t a l  D the x-ray spectrogoniometer was used 

a l so  f o r  the i n i t i a l  alignment. This provided be t te r  alignment of the 

(111) axis  w i t h  t he  rod axis.  (+ - 15' ra ther  than - + 2'). 

Due t o  chipping of the  c rys t a l  before cu t t ing  i n t o  rods, 

t he  resul t ing rods were not qui te  the  length planned. A s  it turned out 

a f t e r  the polishing, t he  rods were of such a length (0.81 cm) t h a t  t he  

acoustic t r a n s i t  t i m e  i n  the rods was nearly ident ica l  t o  the  acoustic 

t r a n s i t  time i n  t h e  quartz transducer rods which we had on hand. Th i s  

condition of course makes it impossible t o  time separate acoustic 

echoes charac te r i s t ic  of' t r a n s i t  through t h e  InSb from those which 

t raverse  the quartz only. A number of solutions t o  t h i s  dilemma were 

possible but  were precluded by the lack  of t i m e  before the  end of the 

contract .  

delivery time f o r  these i s  too long. 

shorter  and polished but the  polishing t i m e  would a l so  preclude t h i s  

solution. 

quartz transducer and use it anyway. 

t o  look for changes i n  the  echo amplitude w i t h  changes i n  current. 

Longer quartz c rys t a l s  could of course be used but t he  

One of the  rods could be cut 

It was decided therefore  t o  a t tach  the  polished rod t o  a 

Leads were attached t o  the  rod 
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The current pulses Mere produced 

pulse generator synchronised w i t h  t he  microwave system. 

pump energy f romthe  current pulse i n t o  the  acoustic wave by way of t he  

electron-phonon in te rac t ion  it i s  necessary t h a t  the  electron d r i f t  veloci ty  

exceed the  sonic velocity.  

such t h a t  it is on during the  t r a n s i t  of the  acoustic echo i n  one direct ion 

and off while the echo returns.  We calculated the  dr i f t  velocity,  vD, i n  

t h e  c r y s t a l  from: 

In order t o  

The timing of the  pulse must a l so  be adjusted 

by a H e w l e t t  Packard 2l2A 

where : 

I = current through the  c rys t a l  

IL = electron mobility 

E = e l e c t r i c  f i e l d  

V = voltage across the  c rys t a l  

I = length of c rys ta l  between the leads 

B = conductivity 

R = resis tance 

A = cross sectional area 

= Hall coeff ic ient  
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The Hal l  coeff ic ient  i s  essent ia l ly  t h e  reciprocal  of t h e  

impurity concentration with a value of % = 4.3 x lo4 cm?/coul for  

c rys t a l  D. 

a drift  velocity of twice the  sonic ve loc i ty  (3.88 x 10 

longitudinal wave i n  t he  (111) di rec t ion  of InSb. 

applied and t h e  resu l t s  w i l l  be discussed i n  sect ion D. 

Thus from eq (7) a current of 1 .2  amps i s  necessary t o  obtain 

5 cm/sec) of a 

Such a pulse was 

2. Other Semiconductors 

Besides the  InSb crys ta l s  obtained and t e s t e d  during t h i s  

program two other semiconductors were purchased from Cominco Products, Inc. 

These were GaAs and I d s .  The manufacturer's specif icat ions f o r  t h e  GaAs  

a t  78OK were: p = 0.28Rcm, p = 7.1 x 10 3 cm2 (v-sec) -1 and Ne = 3.1 x 10 15 
4 2  ~ m - ~ .  The data f o r  InAs were p = O.O07Rcm, p = 3.3 x 10 cm (v-sec)-l, 

16 -3 and Ne = 2.7 x 10 cm . 
These c rys t a l s  were aligned using t h e  x-ray spectrogoniometer 

a s  with In% and were cut i n t o  rods. During polishing of the  InAs, 

d i f f i c u l t i e s  s imilar  t o  those experienced with InSb c rys t a l  C were 

encountered. Once the  problem had been solved a s  discussed above with 

InSb c rys t a l  C, time did not permit repolishing and t e s t ing  of t he  InAs 

c rys t a l  w i t h  t h e  improved method. The same i s  t r u e  fo r  t h e  GaAs crys ta l .  

Kickernell '  3 7 ) ,  i n  h i s  extensive analysis of the  electro-acoustic propert ies  

of 1x1-V cmpOmds, has 

amplifier i n  t he  region 

pointed out t h a t  G a A s  should be useful  a s  an acoustic 

above 1 Gc/sec. 

I 
I 
8 
I 
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I). Acoustic Propagation i n  InSb 

A s  was pointed out i n  Section C, there was no observable 

propagation of 9.3 Gc/sec acoustic waves i n  InSb crys ta l s  A and B. 

Both of these crys ta l s  were boat gruwn w i t h  high dis loat ion densit ies.  

The x-ray alignment of c rys t a l  A was good only t o  - + 2 whereas c rys t a l  B 

was good t o  2 3 ' .  

while c rys t a l  A was n-type. 

0 

Moreover, a s  it turned out, c rys ta l  B was pty-pe 

0 With a 2 misorientation, the ener&y flux would propagate 

a t  an angle (31) of 1.32 x 2' = 2-64'. This  would r e su l t  i n  approximately 

3Oxloss of acoustic energy due t o  co l l i s ion  with the  side wall  before the  

first re f lec t ion .  

i n  c rys t a l  A. 

necessarily be a source of high attenuation. 

and oriented t o  within - + 6' with the (111) axis  exhibited a very l u w  

attenuation. Th i s  c rys t a l  had a very low dis locat ion density. Thus 

it i s  concluded t h a t  t h e  high dislocation density i n  c rys ta l s  A and B 

was responsible f o r  the  high acoustic attenuation. 

This could be a p a r t i a l  cause of high attenuation 

The p t y p e  car r ie rs  (holes) i n  c rys t a l  B should not 

Crystal  C which was n-type 

1. Temperature e f fec ts  with - Crystal C . 
The temperature dependence of 9.3 Gc/sec acoustic attenuation 

was studied w i t h  c rys t a l  C. 

as discussed i n  section C-1-c, was attached t o  quartz rod #6 w i t h  

A rod cut from t h i s  c rys ta l  and polished 

8 
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c lear  epoxy a s  discussed i n  section C-La f o r  the t h i r d  bonding 

method. Th i s  assembly i s  shown inser ted i n  posit ion i n  the  cavity 

i n  Figure 3b. 

0 A s e r i e s  of echoes was observed a t  4.2 K which could be 

w e l l  ident i f ied w i t h  the  number of passages through t h e  quartz and the  

InSb rods. Each echo 

i s  labeled t o  ident i fy  the number of round t r i p s  through each crystal .  

For example, echo (0-1) represents t h e  f i r s t  re f lec t ion  back from the  

quartz-InSb interface,  (1-1) i s  the echo which traversed both the  

quartz and the InSb once. 

InSb and one through quartz. 

e.g. t h a t  the  attenuation i s  very low and i n  f ac t  i s  masked by interference 

e f fec ts .  The ident i f icat ion of these echoes can be seen from Table IV 

which shows t h e  expectedtiming of each echo based on the  known acoustic 

t r a n s i t  time through the quartz and InSb rods. The t ab le  shows a l so  the 

measured timing of t he  pulses of three different  days' runs i l l u s t r a t i n g  

the complete unambiguity i n  ident i f icat ion.  

These echoes are shown i n  Figure 14 a t  the top. 

Echo (2-1) represents two round t r i p s  through 

It i s  evident from the  s i z e  of echo ( l -3) ,  

The s t a r t l i ng  effect  observed i n  these measurements i s  the  

---- increase i n  amplitude of some of the echoes as  the  temperature was increased. 

The lower photo i n  Figure 14 shows the  echo pattern obtained a f t e r  

allowing t h e  temperature t o  r ise  slowly t o  12.1 K. 

t h e  attenuation i n  quartz i s  s t i l l  negligibly small a s  seen from Fig. 9.) 

Th i s  effect  i s  par t icu lar ly  notable i n  echoes 2-5, 2-6, 2-7, and 3-8, 

although it i s  evident as  well i n  echoes 2-1, 1-2, 2-2, 1-3, 2-3, 1-4, 

0 ( A t  t h i s  temperature 
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Figure 14 - Comparison a t  two d i f f e ren t  temperatures of acous t ic  echoes 
i n  Ins3  rod (from c r y s t a l  C )  bonded t o  a quartz t ransducer  rod. Quartz 
rod 1.2 c1;1 long, x-cut. InSb rod 0.32 c m  long, (111)-cut. The syrxbols 
on t h e  l i n e s  pointing t o  t h e  echoes denote t h e  number of round t r i p s  
througa InSb and through quartz.  e.g., 0-1 represents  one round t r i p  
through quartz  only. Note t h e  l a rge  increase i n  amplitude i n  echoes 
2-5, 2-6, 2-7, 3-8 w i t h  increase i n  temperature. 
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I Calc. 

2nd run 
4 t  h 
5th 

4 

8 Table IV 

Expected and measured timing i n  Psecs. of acoustic echoes i n  
quartz (1.27 cm long) bonded to InSb (0.32 cm long) 

11.3 

1 

4*5 
4.6 

4-5 
4.6 

0 

I 
Calc. 7-9 
2nd run 8 .o 
4th 8 .o 
5th 8 .o 

2 

Calc . 
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2-8, and 3-9. 

on another day's run as  seen i n  Figure 15- 

increase i n  s ize  of echoes 1-2, 1-3, 1-4, 2-5, 2-6, 2-7 and 2-8. 

I n  comparing Figs. 14 and 15 w e  see tha t ,  although the  

A s imilar  change is  observed with increase i n  temperature 

Here one can see the  progressive 

increase w i t h  temperature for some echoes i s  qua l i ta t ive ly  reproducible 

from one day's run t o  another (several  other days' runs nut i l l u s t r a t e d  

here show the  same ef fec t  as w e l l ) ,  the echo patterns do not reproduce 

i n  d e t a i l  a f t e r  thermal cycling. A s imilar  i r reproducib i l i ty  a f t e r  

thermal cycling has already been noted i n  the echo patterns of quartz 

alone (Fig. 5 ) .  It i s  l i ke ly  tha t  again, these day t o  day changes a re  

due t o  springing i n  the  quartz transducer, changing the parallelism of 

t h e  quartz faces. 

It is  possible t o  make some generalization about t he  increase 

i n  amplitude with temperature observed f o r  some of the echoes. The increase 

was observed only f o r  echoes which traversed the  InSb, not f o r  those which 

t raversed the  quartz only. The  la rges t  increases occurred f o r  echoes 

representing two o r  three passes through the  InSb although a l l  such 

echoes did not show increases. Typical data f o r  the run i l l u s t r a t e d  

by the  oscilloscope pictures of Figure 15 i s  shown i n  Figure 16. 

data i l l u s t r a t e s  t he  above general ization. 

This 

It i s  tempting, on t h e  bas i s  of these generalizations, t o  

ascr ibe these increases i n  amplitude t o  a decrease i n  attenuation with 

increase i n  temperature f o r  InSb. Although some of the increases a re  very 

la rge  (-14 db), it i s  not possible t o  ident i fy  these increases with a 
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T= 152°K 

Figure 15 - Comparison of 9.3 Gc/lsec 3cousticoechoes i n  &he InSb 
and quartz  (same as Figure 14)  a t  6.2 K, 10.0 K and 13.2 K. 
data  were taken on a d i f f e ren t  day from,the data  i n  Figure 14. 
Differences i n  r e l a t i v e  amplitudes between the  two runs a re  evident 
bu t  t h e  l a r g e  increase of amplitude w i t h  temperature f o r  echoes 
2-5 and 2-6 i s  still evident.  
1-1, 1-2, 1-3, 1-4 and 2-7 a r e  a l s o  seen. 

These 

Increases  i n  o ther  echoes such as  
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Fig.  16 Variation of various echo amplitudes i n  the  InSb + 
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is n o t  shorn here for the s a k e  of  c l a r i t y  i:i ?resentation.  
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quantitative measure of attenuation decrease i n  InSb. 

i s  of course the  strong interference e f fec ts  which a re  not necessarily 

constant with temperature. Although t h e  interference e f fec ts  observed 

i n  quartz alone as  discussed i n  Section B-3-b were completely independent 

of temperature in t h i s  range, t h i s  might not be so with InSb or  w i t h  

the  bond between the  crystals .  Thus it i s  possible t h a t  these increases 

are  merely a manifestation of changes i n  the  interference pattern.  

However, since there a re  no s ignif icant  decreases, as  well as  increases, 

one must s t i l l  consider t he  l ikelihood t h a t  these changes represent a r e a l  

reduction of attenuation i n  InSb with increase i n  temperature. Th i s  would 

be i n  direct  contradiction t o  data presented recent ly  by N i l 1  and McWhorter 

f o r  9 Gc/sec attenuation i n  InSb. 

attenuation w i t h  temperature. 

The reason f o r  t h i s  

(38 ) 

They saw a very f a s t  increase i n  

I n  order t o  es tabl ish the  answer t o  t h i s  question fur ther  

experiments w i l l  have t o  be performed, using other InSb crys ta l s  wi th  

hopefully be t te r  alignment of end faces. Use of the  evaporated 

th in  f i l m  piezoelectric transducer technique described by de KLerk and 

Kelly (39) would help t o  remove many ambiguities due t o  the bond and the  

transducer. 

2. - Frequency -- ef fec ts  w i t h  - Crystal C 

I n  addition t o  the  temperature dependent amplitude changes 

discussed above, w e  observed a frequency s h i f t  i n  the  echoes traversing 

InSb. This  s h i f t  displayed i t s e l f  by requiring a s l igh t ly  different  
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l oca l  osci l la tor  frequency t o  maximize the echoes which traversed the  InSb. 

This effect  i s  i l lustrated i n  Figure 17 which shows i n  the  top photo, 

the echo pattern obtained when the local  osc i l la tor  i s  adjusted to maximize 

echo 1-1 and i n  the lower photo the pattern corresponding t o  maximizing 

echo 0-1 w i t h  the  loca l  oscillator. It i s  evident tha t  a l l  the  echoes 

traversing quartz alone maximize with echo 0-1. 

the  lower photo. 

These are  identified i n  

It is  also evident tha t  echoes traversing InSb tend 

t o  maximize w i t h  echo 1-1. T h i s  effect  can be interpreted as a 

frequency s h i f t  i n  the  acoustic wave as it travels  through the I n s .  

The s h i f t  amounted t o  an increase of about 1-2 Mc/sec. 

were made t o  see if  twice the sh i f t  occurred wi th  pulses corresponding t o  

Several attempts 

two t r i p s  through the  InSb. The resul ts  of these attempts were not 

conclusive due t o  the large uncertainties involved i n  measuring the  actual 

magnitude of such a small change of frequency (1 part  i n  10 ). 4 

3 .  Preliminary tests with Crystal 2 -- 

As discussed i n  Section C-1-d, InSb crystal  D unfortunately 

ended up with a length exactly equal i n  t r ans i t  time t o  the quartz transducers 

on hand- Thus the unambiguous time separation of echoes used with 

crystal  C was not possible here. Therefore any echoes corresponding 

t o  t raversal  through InSb were not identifiable- 

expect t o  see the temperature effects  and the frequency effects  discussed 

i n  connection wi th  Crystal C t o  exhibit themselves i n  t h i s  case. The 

crystal  was bonded w i t h  epoxy t o  quartz crystal  #7 exactly as  was done 

wi th  crystal  C. 

One would s t i l l  
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quartz (same a s  Figure 
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of 9.3 Gc/gec acous t ic  echoes i n  the  InSb and 
14)  a t  4.2 K, for two d i f f e r e n t  tunings of t h e  
echoes labe led  i n  t h e  t o p  photo a r e  those which 

became l a rge r  when the  l o c a l  o s c i l l a t o r  was tuned t o  maximize echo 1-1. 
Those labeled on t h e  lower photo maximized wi th  echo 0-1. 
photo represents  a frequency -2 mc/sec higher than t h e  lower photo. 
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The frequency sh i f t  effect  seen w i t h  c rys t a l  C seems t o  show 

up t o  some extent here. 

l o c a l  o s c i l l a t o r  i s  adjusted t o  maximize the t h i r d  echo i n  the top  photo 

and the  fourth echo in the  lower photo. There i s  apparently some change 

occurring here but it cannot be interpreted fur ther  due t o  the s imi la r i ty  

of t r a n s i t  times. It does appear also t h a t  a l l  the echoes beyond the  4th 

get  l a rge r  when the loca l  o sc i l l a to r  i s  peaked on the  4th echo. 

Figure 18 shows t h e  echo pat tern obtained when the 

An examination of the pulses i n  the  temperature range from 

4.2OK t o  21.7OK revealed no s ignif icant  change i n  the  echo pat tern i n  t h i s  

temperature range u n t i l  the  attenuation i n  quartz became noticeable above 

15OK. 

e f f e c t s  should have been v i s i b l e  here i f  they existed. 

one of three poss ib i l i t i e s :  

The magnitude of the ef fec ts  seen f o r  c rys t a l  C is such t h a t  similar 

This could imply 

1) The changes seen i n  c rys t a l  C were due t o  some pecul ia r i ty  

of the bond which d i d  not exist i n  t h i s  case. 

The attenuation i n  the InSb was very much higher here 

than f o r  c rys t a l  C. 

Some differences between the InSb i n  c rys t a l  C and c rys t a l  D 

caused a s ignif icant  difference i n  the  temperature var ia t ion  

observed w i t h  c rys ta l  C. 

2) 

3 )  

The first poss ib i l i t y  does not seem t o  be a suf f ic ien t  

explanation since one would expect bond differences t o  show up a s  

perhaps a d i f fe ren t  behavior from one bond t o  another but not t o  

be very strong i n  one and non-existent i n  another. The second poss ib i l i ty  
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6 5 4 3 2 1  

Figure 18 - Comparison of 9.3 Gc/sec acous t ic  echoes i n  InSb rod 
(from c rys t a l  D )  bonded t o  a quartz t ransducer  rod. 
long, x-cut. Because of t h e  
i d e n t i c a l  acoust ic  t r a n s i t  times i n  t h e  two rods, t he  echoes f r m  In% 
and quartz a r e  superimposed. Note t h e  s e n s i t i v i t y  t o  tuning which had 
been observed a l s o  i n  Figure 17. 

Quartz rod 1.27 cm 
InSb rod 0.81 cm long (111)-cut. 
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does not seem t o  be en t i r e ly  true,  since the  frequency s h i f t  e f f ec t s  

seen with Crystal C somehow seem t o  show through here also. 

us w i t h  the  poss ib i l i t y  of the  t h i r d  explanation. 

T h i s  leaves 

This w i l l  need t o  be 

examined i n  considerably more de t a i l  by measurements of' a l l  the  e l e c t r i c a l  

properties of the two c rys t a l s  i n  question. O f  course repeated measurements 

of the microwave acoustic echoes with better transducer conditions on 

several  samples from the  same crys ta l  i s  desirable. 

Finally,  a check on the e f f ec t  of adding a current pulse across 

the InSb c rys t a l  during t h e  acoustic propagation was tried. The r e s u l t s  

of t h i s  attempt were somewhat inconclusive although the  e f fec t  was 

de f in i t e ly  small. 

(1.2 amps corresponds t o  moving the electrons a t  twice the  sonic veloci ty)  

A current pulse 2.2 psec long ranging from 0 t o  2 1.2 amps 

was used with the timing var ied  over a wide range. The 2.2 psec duration 

corresponds t o  a one-way acoustic path length i n  the InSb crystal .  Under 

no circumstance was a change greater  than 1 db observable. There did 

however, appear t o  be repeatable changes which occurred as the current 

pulse was varied i n  time w i t h  respect t o  the  echo pattern. The direct ion 

of the change appeared t o  reverse w i t h  change i n  loca l  o sc i l l a to r tun ing .  

T h i s  seems t o  be connected with the frequency s h i f t  e f f ec t  discussed 

e a r l i e r .  The timing of t h e  current pulse corresponding t o  these 

changes was not c lear ly  coincident w i t h  the t i m e  of propagation of the 

acoustic wave through the  InSb. 
. 

A t  the present time t h e  only conclusions 

t h a t  can be drawn about these t e s t s  a re  t h a t  any e f f ec t  which may ex i s t  

i s  small. 
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E. Summary and Conclusions 

Measurements were made of a t tenuat ion of 9.3 Gc/sec acoustic 

waves i n  quartz and tourmaline c rys t a l s  a s  a function of temperature. 

The acoustic waves were generated by piezoelectr ic  exc i ta t ion  of t he  

c rys t a l  surface i n  a reentrant  microwave cavity. The measurements on 

quartz agreed wel l  w i th  t he  data of other invest igators  over t h e  range 

of overlap and extended the  dynamic range of t h e  data considerably. A 
I 

change i n  t h e  power of the  temperature dependence was observed w i t h  both 

quartz and tourml ine .  

a t  l5'K t o  n = 4 a t  40 K while f o r  tourmaline w e  measured n = 7.5 a t  6 K 

and n = 0.8 a t  93OK. It was concluded t h a t  qua l i t a t ive ly  the  quartz and 

n The T var ia t ion  f o r  quartz extended from n = 7 
0 0 

tourmaline results were consistent w i t h  phonon-phonon sca t te r ing  theor ies  

a t  the higher temperature end but t h a t  the high value of n a t  the  lower 

temperatures was not adequately explained. 

A large v a r i a b i l i t y  i n  acoustic echo pat terns  i n  quartz was 

observed a f t e r  repeated thermal cycling. 

of the  attenuation was, however, qui te  independent of t h i s  v a r i a b i l i t y  

The temperature dependent par t  

i n  the crystals .  These e f f ec t s  were presumed t o  be due t o  changes i n  the  

stresses i n  t h e  c rys ta l ,  causing a change i n  the  parallelism of the end faces. 

Four high pur i ty  s ingle  c rys t a l s  of InSb were obtained and 

prepared f o r  electron-phonon in te rac t ion  t e s t s .  The preparation involved 

orienting, cut t ing,  f i n a l  orienting and polishing of t he  c rys t a l s  such 

t h a t  the f i n a l  products were 3 mm diameter s ingle  c rys t a l  rods wi th  end faces  

I 
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polished f l a t  and pa ra l l e l  t o  each other and normal t o  the (1U) axis.  

The cut t ing and polishing character is t ics  of these crys ta l s  were not t he  

same from one c rys t a l  t o  t h e  other and considerable d i f f icu l ty  was 

encountered, par t icu lar ly  w i t h  the t h i r d  c rys ta l .  These c rys t a l  rods 

were bonded t o  quar t z  rods used as transducers. 

were t r i e d ,  but the straightforward method of bonding w i t h  a t h i n  f i lm  

of epoxy was settled on. 

Several bonding methods 

no acoustic propagation was observed i n  rods cut from the  

f i rs t  two crys ta l s  w i t h  or without a d r i f t  current of electrons i n  

t h e  crystal .  T h i s  was interpreted a s  a high attenuation due t o  some 

source other than electron-phonon interact ion,  since a large electron- 

phonon in te rac t ion  would produce an acoustic gain when the electron d r i f t  

ve loc i t s  exceeds the  acoustic velocity. 

i n  a rod cut from the  t h i r d  c rys ta l  and exhibited a very low attenuation. 

The s igni f icant  difference between t h i s  c rys t a l  and the other two was 

the dis locat ion density, which was very much smaller i n  the t h i r d  crystal .  

It was concluded t h a t  dislocation sca t te r ing  was responsible f o r  the high 

attenuation i n  the  first two crystals .  

However phonons were propagated 

Two r a the r  surprising e f fec ts  were seen i n  phonon propagation 

One was an apparent decrease i n  attenuation i n  the  t h i r d  InSb crystal .  

w i t h  increase i n  tempi-ature between 4.2 K and 15 K. 

frequency s h i f t  of 1-2 Mc/sec i n  the phonons propagating through the InSb. 

The fourth c rys t a l  was prepared and examined f o r  these e f fec ts ,  but due t o  

0 0 The other was a 
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an unfortunate chipping of t he  c rys ta l ,  the  first t e s t  ( the only one which 

time allowed during the  course of the contract)  was somewhat ambiguous 

i n  i t s  results. 

iden t i ca l  t o  t h a t  of t h e  quartz transducer. The t en ta t ive  conclusion 

about the  strange temperature var ia t ion  i s  t h a t  it could be a peculiar bond 

effect but t h a t  a r e a l  e f f ec t  i n  the c rys t a l  can by no means be ruled out. 

Further experimental investigation of t h i s  e f f ec t  i s  cer ta in ly  warranted. 

The frequency s h i f t  e f f ec t  was seen cons i s t en t ly , in  the  t h i r d  c rys t a l  

and appeared t o  be present a l so  i n  the  four th  c rys ta l .  The s h i f t  ccnsisted 

of an increase i n  frequency and a more precise determination of i t s  

magnitude w i l l  be necessary. 

The acoustic length of the c rys t a l  turned out t o  be 

No electric current pulse was appl ied  i n  the tes ts  of the t h i r d  

c rys t a l  since the  rod was too short  (0.32 cm) t o  e f fec t ive ly  a t tach  current 

leads near the  ends. Such pulses were applied i n  the  tes t s  of t h e  fourth 

c rys t a l  but no c l ea r  e f f ec t  was seen. A very small 

but due t o  the ambiguity mentioned above it was not 

it sensibly. 

A continued study of t h e  above e f f ec t s  i s  

e f f ec t  seemed t o  exist 

possible t o  in te rpre t  

recommended a s  well  

a s  an extension of the  work t o  other semiconductors. 

of GaAs and InAs have been oriented and cut f o r  t h i s  purpose, but have not 

yet been polished and tes ted.  

I n  par t icu lar ,  c rys t a l s  
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